

2024

Drinking Water Report

Making Safe DrinkingWater

Your drinking water comes from a groundwater source: six wells, ranging from 291 to 700 feet deep, draw water from the Mt. Simon, Tunnel City–Mt. Simon, and Tunnel City–Wonewoc aquifers.

The City of Champlin works hard to provide safe and reliable drinking water that meets federal and state water quality requirements. This report provides information about your drinking water and how to protect our precious water resources.

Contact David Stifter, Utility Superintendent, at (763) 923-7190 or dstifter@ci.champlin.mn.us if you have questions about Champlin's drinking water. You can also ask for information on how to participate in decisions that may affect water quality.

The U.S. Environmental Protection Agency sets safe drinking water standards. These standards limit the amounts of specific contaminants allowed in drinking water, ensuring that tap water is safe to drink for most people. The U.S. Food and Drug Administration regulates the amount of specific contaminants in bottled water. Bottled water must provide the same public health protection as public tap water.

Drinking water, including bottled water, may contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at (800) 426-4791.

Champlin Monitoring Results

This report contains our monitoring results from January 1 to December 31, 2024. We work with the Minnesota Department of Health to test drinking water for more than 100 contaminants. It is not unusual to detect some contaminants in small amounts—no water supply is ever completely free of them. Drinking water standards are in place to protect Minnesotans from substances that may pose a risk to health.

Learn more by visiting the Minnesota Department of Health's webpage:

Basics of Monitoring and Testing of Drinking Water in Minnesota

https://www.health.state.mn.us/communities/environment/water/factsheet/sampling.html

How to Read the Water Quality Data Tables

The tables below show the contaminants we found last year or during the most recent sampling for that contaminant. They also include the levels detected and the Environmental Protection Agency's (EPA) limits. Substances we tested for but did not detect are not listed in the tables.

Some contaminants are sampled less than once per year because their levels tend to remain stable. If a contaminant was detected the last time it was tested, it is included in the tables along with the date of detection.

We may have conducted additional monitoring for contaminants not regulated under the Safe Drinking Water Act. To request a copy of those results, call the Minnesota Department of Health at (651) 201-4700 between 8:00 a.m. and 4:30 p.m., Monday through Friday.

Some contaminants are monitored regularly throughout the year, and rolling (or moving) annual averages are used to determine compliance. Because of this averaging, the Range of Detected Test Results for the calendar year may be lower than the Highest Average or Highest Single Test Result, if that higher value occurred in a previous calendar year.

Definitions

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

EPA: Environmental Protection Agency

MCL(Maximumcontaminantlevel): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum contaminant level goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum residual disinfectant level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG(Maximumresidualdisinfectantlevel goal):

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

N/A (Not applicable): Does not apply.

pCi/l (picocuries per liter): A measure of radioactivity.

ppt (parts per trillion): One part per trillion is like one drop in one trillion drops of water, or about one drop in an Olympic sized swimming pool. ppt is the same as nanograms per liter (ng/l).

ppb (parts per billion): One part per billion in water is like one drop in one billion drops of water, or about one drop in a swimming pool. ppb is the same as micrograms per liter ($\mu g/l$).

ppm (parts per million): One part per million is like one drop in one million drops of water, or about one drop in a swimming pool. ppm is the same as milligrams per liter (mg/l).

PWSID: Public water system identification.

Monitoring Results - Regulated Substances

LEAD AND COPPER – Tested at customer taps.							
Contaminant (Date, if sampled in previous year)	EPA's Ideal Goal (MCLG)	EPA's Action Level	90% of Results Were Less Than	Number of Homes with High Levels	Range of Detected Test Results	Violation	Typical Sources
Lead (07/21/22)	0 ppb	90% of homes less than 15 ppb	0.76 ppb	0 out of 30	0.1 - 12.5 ppb	NO	Corrosion of household plumbing.
Copper (07/21/22)	0 ppm	90% of homes less than 1.3 ppm	0.92 ppm	1 out of 30	0.12 - 2.13 ppm	NO	Corrosion of household plumbing.

INORGANIC & ORGANIC CONTAMINANTS – Tested in drinking water.						
Contaminant (Date, if sampled in previous year)	EPA's Ideal Goal (MCLG)	EPA's Limit (MCL)	Highest Average or Highest Single Test Result	Range of Detected Test Results	Violation	Typical Sources
Nitrate	10 ppm	10 ppm	0.08 ppm	0.00 - 0.08 ppm	NO	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
Gross Alpha	0 pCi/l	15 pCi/l	5 pCi/l	4.8 - 5.0 pCi/l	NO	Erosion of natural deposits.
Combined Radium	0 pCi/l	5 pCi/l	2.5 pCi/l	2.2 - 2.5 pCi/l	NO	Erosion of natural deposits.

Definitions

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

EPA: Environmental Protection Agency

MCL(Maximumcontaminantlevel): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum contaminant level goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum residual disinfectant level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG(Maximumresidualdisinfectantlevel goal):

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

N/A (Not applicable): Does not apply.

pCi/l (picocuries per liter): A measure of radioactivity.

ppt (parts per trillion): One part per trillion is like one drop in one trillion drops of water, or about one drop in an Olympic sized swimming pool. ppt is the same as nanograms per liter (ng/l).

ppb (parts per billion): One part per billion in water is like one drop in one billion drops of water, or about one drop in a swimming pool. ppb is the same as micrograms per liter ($\mu g/l$).

ppm (parts per million): One part per million is like one drop in one million drops of water, or about one drop in a swimming pool. ppm is the same as milligrams per liter (mg/l).

PWSID: Public water system identification.

CONTAMINANTS RELATED TO DISINFECTION – Tested in drinking water.						
Substance (Date, if sampled in previous year)	EPA's Ideal Goal (MCLG or MRDLG)	EPA's Limit (MCL or MRDL)	Highest Average or Highest Single Test Result	Range of Detected Test Results	Violation	Typical Sources
Total Trihalomethanes (TTHMs)	N/A	80 ppb	1.3 ppb	N/A	NO	By-product of drinking water disinfection.
Total Haloacetic Acids (HAA)	N/A	60 ppb	1.1 ppb	0.00 - 1.10 ppb	NO	By-product of drinking water disinfection.
Total Chlorine	4.0 ppm	4.0 ppm	0.55 ppm	0.09 - 0.75 ppm	NO	Water additive used to control microbes.

^{*}Total HAA refers to HAA5

OTHER SUBSTANCES – Tested in drinking water.						
Substance (Date, if sampled in previous year)	EPA's Ideal Goal (MCLG)	EPA's Limit (MCL)	Highest Average or Highest Single Test Result	Range of Detected Test Results	Violation	Typical Sources
Fluoride	4.0 ppm	4.0 ppm	0.64 ppm	0.55 - 0.59 ppm	NO	Erosion of natural deposits; Water additive to promote strong teeth.

Potential Health Effects and Corrective Actions (If Applicable)

Fluoride: If your drinking water fluoride levels are below the optimal concentration range of 0.5 to 0.9 parts per million (ppm), talk with your dentist about ways to protect your teeth from decay and cavities. For more information, visit the MDH Drinking Water Fluoridation page: www.health.state.mn.us/communities/environment/water/com/fluoride.html

Fluoride is nature's cavity fighter, with small amounts naturally present in many drinking water sources. There is an overwhelming weight of credible, peer-reviewed scientific evidence that fluoridation reduces tooth decay and cavities in both children and adults—even when fluoride is available from other sources such as toothpaste and mouth rinses. Studies show that optimal fluoride levels in drinking water benefit public health; accordingly, municipal community water systems adjust the fluoride concentration to an optimal range between 0.5 and 0.9 parts per million (ppm) to protect your teeth. Additionally, fluoride levels below 2.0 ppm will not increase the risk of enamel fluorosis, a cosmetic condition affecting the teeth.

Definitions

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

EPA: Environmental Protection Agency

MCL(Maximumcontaminantlevel): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum contaminant level goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum residual disinfectant level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG(Maximumresidualdisinfectantlevel goal):

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

N/A (Not applicable): Does not apply.

pCi/l (picocuries per liter): A measure of radioactivity.

ppt (parts per trillion): One part per trillion is like one drop in one trillion drops of water, or about one drop in an Olympic sized swimming pool. ppt is the same as nanograms per liter (ng/l).

ppb (parts per billion): One part per billion in water is like one drop in one billion drops of water, or about one drop in a swimming pool. ppb is the same as micrograms per liter ($\mu g/l$).

ppm (parts per million): One part per million is like one drop in one million drops of water, or about one drop in a swimming pool. ppm is the same as milligrams per liter (mg/l).

PWSID: Public water system identification.

Monitoring Results – Unregulated Substances/Emerging Contaminants

In addition to testing drinking water for contaminants regulated under the Safe Drinking Water Act, we sometimes monitor for substances that are not currently regulated. Unregulated contaminants do not have legal limits for drinking water. However, the Minnesota Department of Health (MDH), the U.S. Environmental Protection Agency (EPA), and other health agencies may develop comparison values for some of these compounds. Some comparison values are based solely on potential health effects and do not consider factors such as our ability to detect extremely low concentrations, or the cost and availability of treatment technologies. In some cases, meeting these values may be costly, difficult, or impractical—especially when large-scale treatment solutions do not yet exist. Sample data and comparison values are included in the table below. It is important to note that these comparison values are not enforceable standards. Detection of a regulated or unregulated contaminant should not automatically be a cause for concern. The significance of any detection depends on current health effects data, which is still evolving and may change over time. Someone drinking water containing a contaminant at or below the comparison value is considered to be at little or no risk for harmful health effects. If a contaminant is detected above its comparison value, individuals who are more vulnerable—such as fetuses, infants, young children, the elderly, or those with weakened immune systems may need to take additional precautions. We are sharing this information as a public education opportunity, to keep you informed about any unregulated or emerging contaminants detected in your water. Monitoring for unregulated contaminants helps the EPA identify where these substances occur and decide whether future regulations may be needed.

More information available at:

MDH's A-Z List of Contaminants in Water

https://www.health.state.mn.us/communities/environment/water/contaminants/index.html

Fourth Unregulated Contaminant Monitoring Rule (UCMR 4)

https://www.health.state.mn.us/communities/environment/water/com/ucmr4.html

■ Fifth Unregulated Contaminant Monitoring Rule (UCMR5)

https://www.epa.gov/dwucmr/fifth-unregulated-contaminant-monitoring-rule

■ EPA UCMR5 Program Overview Factshee (describes UCMR5 contaminants and standards)

https://www.epa.gov/system/files/documents/2022-02/ucmr5-factsheet.pdf

In the past year, your drinking water may have been tested for additional unregulated containments, and results are still being processed. The UCMR 5 Data Finder will search, summarize, and download analytical results, visit https://www.epa.gov/dwucmr/fifth-unregulated-contaminant-monitoring-rule-data-finder.

UNREGULATED/EMERGING CONTAMINANTS – Tested in drinking water.							
Contaminant	Comparison Value	Highest Average Result or Highest Single Test Result	Range of Detected Test Results				
Sodium*	20 ppm	19.8 ppm	N/A				
Sulfate	500 ppm	28.1 ppm	N/A				

^{*}Home water softening can increase the level of sodium in your water.

Learn More About Your Drinking Water

Drinking Water Sources

Groundwater provides 75% of Minnesota's drinking water and is located in underground aquifers.
Surface water provides 25% of Minnesota's drinking water and comes from lakes, rivers, and streams above ground.

Contaminants can enter drinking water sources from both the natural environment and human activities. There are five main types of contaminants found in drinking water sources:

- Microbial contaminants, such as viruses, bacteria, and parasites. Sources include sewage treatment plants, septic systems, agricultural livestock operations, pets, and wildlife.
- Inorganic contaminants include salts and metals from natural sources (e.g. rock and soil), oil and gas production, mining and farming operations, urban stormwater runoff, and wastewater discharges.
- Pesticides and herbicides are chemicals used to reduce or kill unwanted plants and pests. Sources include agriculture, urban stormwater runoff, and commercial and residential properties.
- Organic chemical contaminants include synthetic and volatile organic compounds. Sources include industrial processes and petroleum production, gas stations, urban stormwater runoff, and septic systems.
- Radioactive contaminants such as radium, thorium, and uranium isotopes come from natural sources (e.g. radon gas from soils and rock), mining operations, and oil and gas production.

The Minnesota Department of Health provides information about your drinking water source(s) in a source water assessment, including:

- How Champlin is protecting your drinking water source(s);
- Nearby threats to your drinking water sources;
- How easily water and pollution can move from the surface of the land into drinking water sources, based on natural geology and the way wells are constructed.

Find your water source assessment at Source Water Assessments:

- Call (651) 201-4700 between 8:00 a.m. and 4:30 p.m., Monday through Friday.
- https://www.health.state.mn.us/ communities/environment/water/swp/ swa.html
- Scan the QR code to learn more.

Some People Are More Vulnerable to Contaminants in Drinking Water

Some individuals may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons—such as those undergoing cancer chemotherapy, individuals who have received organ transplants, people with HIV/AIDS or other immune system disorders, some elderly individuals, and infants—can be particularly at risk from infections. The developing fetus, and therefore pregnant women, may also be more vulnerable to contaminants in drinking water. These individuals should seek advice about safety from their healthcare providers.

Guidelines from the U.S. Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) on reducing the risk of infection from Cryptosporidium and other microbial contaminants are available by calling the Safe Drinking Water Hotline at (800) 426-4791.

City of Champlin 2024 Drinking Water Report | 7

Lead in Drinking Water

Lead can cause serious health problems. Babies, children under six years old, and pregnant women are at the highest risk. You may be exposed to lead through paint, water, dust, soil, food, hobbies, or your job. There is no safe level of lead.

Lead in drinking water primarily comes from materials and components associated with service lines and home plumbing. Our water system is responsible for providing high-quality drinking water and removing lead pipes from service lines but cannot control the materials used in home plumbing. You can help protect your family by identifying and removing lead materials in your home and by taking steps to reduce your exposure.

Read below to learn how you can protect yourself from lead in drinking water:

1. Let the water run before drinking tap water.

- -Flush your pipes for several minutes by running your tap. If you have a lead service line, you may need to let the water run longer. A service line is the underground pipe that brings water from the main water pipe under the street to your home.
- -Activities like showering, doing laundry, or washing dishes help keep water moving but are not a substitute for running the tap before drinking if water has been sitting unused for several hours.
- -The only way to know if letting the water run reduces lead is to test your water. If flushing does not lower lead levels, consider additional steps.

2. Know your service line material.

-Contact your public water system or search your address at the Minnesota Lead Inventory Tracking Tool https://maps.umn.edu/LSL/

-The EPA's Guide provides step-by-step instructions on identifying lead pipes in your home https://www.epa.gov/ground-water-and-drinking-water/protect-your-tap-quick-check-lead

3. Use cold water for drinking, cooking, and making baby formula.

-Hot water releases more lead from pipes than cold water.

4. Test your water.

- -Let the water run and use cold water. If you are still concerned about lead, arrange a test through a Minnesota Department of Health lab. MDH can help you understand your test results. https://eldo.web.health.state.mn.us/public/accreditedlabs/labsearch.seam
- 5. Treat your water if a test shows your water has high levels of lead after you let the water run. You can use a filter certified with ANSI/NSF standards 53 and 42 for lead reduction. Read about Point-of-Use Water Treatment Units for Lead Reduction https://www.health.state.mn.us/communities/environment/water/factsheet/poulead.html
- **6. Be Aware:** Head Start Programs, Child Care Centers, Public and Charter Schools are required to test for lead. https://www.web.health.state.mn.us/communities/environment/water/schools/index.html

Information on lead in drinking water, testing methods, and additional steps to minimize exposure are available at:

-EPA Basic Information

http://www.epa.gov/safewater/lead

-Minnesota Department of Health

https://www.health.state.mn.us/communities/environment/water/contaminants/lead.html

-Lead Poisoning Prevention: Common Sources

https://www.health.state.mn.us/communities/environment/
lead/fs/common.html

Service Line Material Inventory

The City of Champlin has completed and submitted its service line materials inventory to the Minnesota Department of Health. The inventory is publicly available, and you can check the materials for your service line by visiting the Lead Inventory Tracker (LITT) at https://maps.umn.edu/LSL/. You may also contact David Stifter, Utility Superintendent, at (763) 923-7190. A comprehensive evaluation was completed of the service line materials from the water main to the meter inside the property. This process utilized documents, records, pictures, and inspections to verify that all services were non-lead. As of 08/01/2024, our inventory contains 0 lead, 0 galvanized requiring replacement, 0 unknown material, and 7966 non-lead service lines.

Help Protect Our Most Precious Resource - Water

The Value of Water

Drinking water is a precious resource, yet we often take it for granted. Throughout history, civilizations have risen and fallen based on access to a plentiful and safe water supply. That remains true today. Water is essential for healthy people and communities.

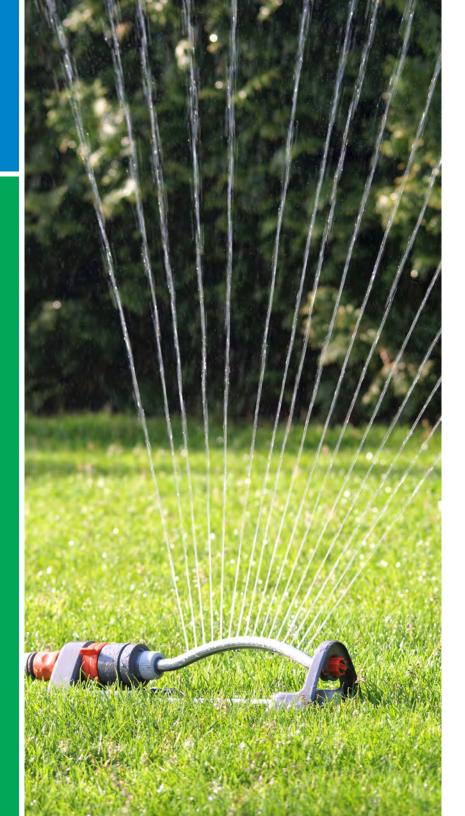
Water is also vital to our economy. We need it for manufacturing, agriculture, energy production, and more. One-fifth of the U.S. economy would come to a halt without a reliable and clean source of water.

Systems are in place to provide safe drinking water. The state of Minnesota, along with local water systems, works to protect drinking water sources. For instance, we might seal an unused well to prevent groundwater contamination. We treat water to remove harmful contaminants and conduct extensive testing to ensure drinking water safety.

If we detect a problem, we take corrective action and notify the public. Water from a public water system, like yours, is tested more thoroughly and regulated more closely than water from any other source, including bottled water.

Conservation

Conservation is essential, even in the land of 10,000 lakes. For instance, in certain areas of the metropolitan region, groundwater is being consumed more quickly than it can be replenished. Some agricultural areas in Minnesota are susceptible to drought, which can impact crop yields and municipal water supplies. We must use our water wisely. Here are some tips to help you and your family conserve water—and save money in the process:


- -Fix running toilets; they can waste hundreds of gallons of water.
- -Turn off the tap while shaving or brushing your teeth.
- -Shower instead of bathing, as bathing typically uses more water than showering.
- -Only run full loads of laundry and adjust the machine to the appropriate water level.
- -Run the dishwasher only when it's full.
- -Use water-efficient appliances (look for the Water Sense label).
- -Practice water-friendly landscaping, such as incorporating native plants.
- -When watering your yard, do so slowly, deeply, and less frequently. Water early in the morning and close to the ground.

Learn More:

- Minnesota Pollution Control Agency's Conserving Water https://www.pca.state.mn.us/
- U.S. Environmental Protection Agency's WaterSense https://www.epa.gov/watersense

You Can Prevent Pollution

Many of our daily activities contribute to the pollution of Minnesota's surface water and groundwater. You can help protect these drinking water sources by taking the following actions:

Lawn and property:

- Limit use of herbicides, pesticides, and fertilizers on your property.
- Keep soil in place with plants, grass, or rocks.
- Cover temporary piles of dirt with a tarp or burlap sack.
- Keep leaves and grass off of streets and sidewalks.
- Maintain any septic systems, private wells, and storage tanks to prevent leaks. Seal any unused wells.

Out-of-date medications: Never flush unwanted or out-of-date medications down the toilet or sink. Always take them to a waste disposal or prescription medication drop-off site. More information is available at www.pca.state.mn.us/living-green/managing-unwantedmedications.

Hazardous materials: Safely store hazardous materials such as paint, batteries, herbicides, pesticides, and pool chemicals. Dispose of them at a proper waste disposal facility or drop-off

event. Do not dump down storm drains, sink, or onto your land. Learn more at https:// www.pca.state.mn.us/news-and-stories/safely-dispose-of-household-hazardous-waste.

Pet waste: Pick up after your pet and put waste in the trash.

Trash: Seal trash bags and keep litter out of the street.

Winter ice removal: Chemicals used to break up the ice are called deicers or anti-icers. They can be harmful to the environment, corrosive to driveways and sidewalks and harmful to plants, pets and humans. Always shovel first, and then apply deicers/anti-icers lightly if needed. Learn more at https://www.pca.state.mn.us/featured/10-smart-salting-tips-protectminnesota-waters.

Keep an eye out for car and motor fluids: Seal or repair fluid leaks that could run in to streets and storm drains. Take used motor oil or other fluids to a neighborhood drop-off site.

Be a water advocate: Spread the word; get involved. There are many groups and individuals working to protect water across Minnesota.

Home Water Treatment

The Pros and Cons of Home Water Softening

When considering whether to use a water softener, contact your public water system to find out if you have hard water. Many systems treat for hardness, making water softeners unnecessary. Water softeners are a water treatment device that removes water hardness (dissolved calcium and magnesium). They must be installed and maintained properly to be safe and effective.

Learn more:

https://www.health.state.mn.us/communities/environment/water/factsheet/softening.html

The benefits of soft water include:

- Increased efficiency for soaps and detergents.
- Reduction in mineral staining on fixtures and in pipes.
- A potential increase in the lifespan of water heaters.

The drawbacks of soft water include:

- Operation and maintenance costs.
- More sodium. People on low-sodium diets should consult a doctor if they plan to regularly consume softened water.
- The production of salt brine as a byproduct. This can have negative effects at wastewater treatment plants and on ecosystems. Reduce the amount of salt brine used or install a salt-free system.

Water systems have ongoing infrastructure, operations, and maintenance costs in supplying safe drinking water, and many are implementing additional efforts to help ensure health equity and manageable water bills. Here's a few tips:

- o Turn the faucet off while brushing teeth.
- o Shower instead of bathing to reduce water use.
- o Fix running toilets by replacing flapper valves.
- o Run full loads of laundry and use a minimal water use setting.

LEARN MORE:

https://www.ci.champlin.mn.us/219/Utilities-Department

